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“The effort to understand the universe is one of the very few things that lifts human

life a little above the level of farce, and gives it some of the grace of tragedy.”

— Steven Weinberg
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Abstract

There is a growing recognition that the environmental conditions we refer to as
"space weather" have an impact on the technical infrastructure that drives the world’s
interconnected economies. As a result, better forecasts, environmental standards, and
infrastructure design are required to better protect society from space weather. With
research observatories on the ground and in space, significant progress has been done
and continues to be made. However, the space weather domain is huge, spanning
from deep within the Sun to well beyond planetary orbits.

With the disruptive potential of solar eruptive phenomena like solar flares and
coronal mass ejections, there is a strong need for improving our capabilities in being
able to predict and prepare for such events. During these events, radiation and mass
ejections can cause geomagnetic storms, which can disrupt our satellites and com-
munication systems. Being aware of these episodes beforehand allows us to be ready
to deal with their effects. In this context, Machine Learning is a newly emerging
valuable tool to effectively and accurately make these predictions. While substan-
tial work has been done in predicting solar flares using machine learning based data
driven models, the field of predicting sunspots remains relatively underdeveloped. It
is currently not feasible to anticipate their occurrence using a physical model, and
one observational prescription has not proven to be reliable.

In this study we have identified issues in previously done machine learning based
studies and attempt to find possible solutions. We primarily use Dopplergams time
series as the source of data for our models. Machine Learning provides with a large
number of options to choose from. For this study, we work with Convolutional Neu-
ral Networks, a special kind of neural network designed for dealing with images.
The dopplergram time series is used to extract relevant snapshots and used in the
aforementioned models.
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Chapter 1

Introduction

1.1 Sunspots

During the Ming Dynasty (1368-1644), the Chinese discovered the first systematic
observation of sunspot activity in 1382, when spots on the sun were noticed by peer-
ing at the sun through dense forest fire smoke. After the 18th century, sunspot levels
became more than a source of amazement and fascination. Since 1834, the National
Oceanic and Atmospheric Administration (NOAA) and the United States Naval Ob-
servatory have gathered reliable sunspot data.

The Sun is the central star of our Solar System. It is made up of plasma that
recieves its heat through nuclear fusion at its core. Emitting energy in a number of
forms, the sun is an extremely cruical source of energy for the living beings residing
on the planet we call home.

FIGURE 1.1: The Sun photographed at 304 angstroms by the Atmo-
spheric Imaging Assembly (AIA 304) of NASA’s Solar Dynamics Ob-
servatory (SDO). This is a false-color image of the Sun observed in

the extreme ultraviolet region of the spectrum. 1

1Image Credit: NASA/SDO/AIA/HMI/Goddard Space Flight Center.
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The magnetic field of the Sun is variable across its surface. It has a polar field of
1–2 gauss, whereas sunspots have a field of 3,000 gauss and solar prominences have
a field of 10–100 gauss. The magnetic field changes throughout time and space. The
most noticeable fluctuation in the number and size of sunspots is the 11-year solar
cycle, which is quasi-periodic.

Sunspots appear as black patches on the Sun’s photosphere and correspond to
magnetic field concentrations that prevent heat from convecting from the solar core
to the surface. As a result, sunspots look darker because they are significantly cooler
than the surrounding photosphere. Very few sunspots can be seen during a solar
minimum. The ones that we do see, are at high solar latitudes. According to Spörer’s
law, as the solar cycle moves towards it’s maximum, a higher number of sunspots are
observed in proximity to the solar equator. They vary a lot in sizes and can be as big
as thousands of kilometres in diameter.

There are regions on the Sun’s photosphere which have high amounts of magnetic
activity relative to surrounding areas. These appear as black patches and are called
Sunspots (Figure 1.2). Because of the high magnetic activity, convection of the heat
is limited, leading to sunspots looking darker as they are significantly cooler than the
surrounding photosphere.

FIGURE 1.2: Over the course of Feb. 19-20, 2013, the bottom two
black spots on the sun, known as sunspots, formed swiftly. These
two sunspots are part of the same system. This image combines im-
ages from two instruments on NASA’s Solar Dynamics Observatory
(SDO): the Helioseismic and Magnetic Imager (HMI), which takes
visible-light pictures of sunspots, and the Advanced Imaging Assem-
bly (AIA), which took a 304 Angstrom wavelength picture of the sun’s

lower atmosphere, which is colourized in red. 2

2Image Credit: NASA/SDO/AIA/HMI/Goddard Space Flight Center.
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An 11-year sunspot cycle that corresponds to an oscillating exchange of energy
between toroidal and poloidal solar magnetic fields, is one bisection of a 22-year dy-
namo cycle known as the Babcock–Leighton cycle. It has periods of solar maximum
and solar minimum. During the solar maximum, the exterior poloidal dipolar mag-
netic field is at its lowest power but the interior toroidal quadrupolar field is near its
highest power. During this time, the convective zone experiences buoyant upwelling
which is the driver for the toroidal magnetic field to emerge through the photosphere,
resulting in pairs of sunspots that are generally aligned east-west and with magnetic
polarity footprints that are opposing.

Understanding solar magnetism is one of the most pressing issues in solar and
astrophysics [14] . Sunspot areas are thought to be created by a dynamo action at
the bottom of the convection zone, roughly 200 Mm below the photosphere, accord-
ing to current hypotheses. However, there is no compelling evidence to support this
theory, and dynamo processes working in the bulk of the convection zone or even
in the near-surface shear layer have also been proposed. The depth of this process
might be determined by examining emerging magnetic flux, laying the groundwork
for a better understanding of sunspots and active zones. Flares and mass eruptions
from active zones on the Sun can cause power outages on Earth, satellite failures,
and telecommunication and navigation service disruptions. Space weather forecasts
would be improved by monitoring solar subsurface processes and anticipating mag-
netic activity.

1.2 Space Weather and Importance of Prediction

The circumstances on the Sun that can affect the operation and reliability of space
and ground-based systems, as well as human life on Earth, are referred to as space
weather. The Sun’s expelled magnetic fields, radiation, particles, and materials can
interact with the Earth’s upper atmosphere and surrounding magnetic field to cause
a range of consequences. One of the earliest instances of Space Weather affecting
humans was on December 21, 1806, when Alexander von Humboldt observed that
his compass had become erratic during a bright auroral event [21]. Richard C. Car-
rington saw two rapidly brightening patches of light in the centre of a sunspot group
he was viewing on September 1, 1859, during his regular observations of sunspots.
Another British astronomer, R. Hodgson, had noticed the same thing. This is the first
precise description of a solar flare, which is defined as a powerful radiation emission
caused by the abrupt release of magnetic energy held inside twisted flux tubes in the
solar atmosphere.
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Many critical infrastructure and services that our modern society relies upon,
such as telecommunications, global navigational networks, satellite broadcasts, po-
lar air-traffic and high frequency radio communications are dependent on near-Earth
space environmental conditions. This environment, termed as space weather, is nei-
ther constant, nor benign; it is a variable environment that is governed by changing
radiation, magnetic, and high energy particle fluxes from the Sun. The most severe of
space storms generated by the Sun have been known to cripple satellites, trip electric
power grids and lead to large-scale communication blackouts (Figure 1.3).

FIGURE 1.3: Space weather phenomena have an impact on technol-
ogy and infrastructure. Image Credit/Copyright: Alcetel/NJIT

Sunspots are strongly magnetized regions. With magnetic fields 10,000 times
stronger than the Earth’s, they occasionally erupt on the Sun’s surface and lead to
Solar Flares [11]. These are believed to result from complex interactions of plasma
flows and magnetic fields within the Sun (Brandenburg and Subramanian 2005 [7],
Charbonneau et al. [8] 2010, Nandy et al. [18] 2011, Mitra et al. 2014 [16]). The
magnetic structure and properties of sunspots (Hahn et al. 2005 [12], Hazra, Nandy
and Ravindra 2015 [13], Pal et al. 2018 [19]) and rate of magnetic flux emergence
(Cheung et al. 2018 [9]) determine whether they can produce energetic solar storms.
Currently, physical model based prediction of their occurrence is not possible and
one observational prescription (Ilinodis, Zhao and Kosovichev 2011) [14] has not
proven to be robust.
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In the recent times, the amount of solar data that is being collected by the ob-
servatories, both ground based and the ones launched into space, is increasing ex-
ponentially. Instruments improve in spatial, temporal, and/or wavelength resolution
with each new mission. In any of these three areas, higher resolution equates to more
data volume. It is very diffcult task to work through this data and analyse it manually.
Automation is the need of the hour and machine learning as an automated data driven
approach is an extremely valuable asset [3].

While Sunspot emergence prediction is an important problem, it is also a difficult
problem. Solar flares and Sunspots result from complex interactions of plasma flows
and magnetic fields within the Sun. The few attempts at machine learning based solar
storm predictions has shown great potential, although the forecast success rate has
not reached desirable levels (Ahmed et al. 2013 [1], Bobra and Couvidat 2015 [5],
Bobra et al. 2016 [6], Nagem et al. 2018 [17], Poduval and Berger 2018 [20]). We
have identified several deficiencies in these preliminary studies. First of all, these
studies applied machine learning to few derived parameters from solar observations
(with the assumption that these parameters are the only relevant ones). Second they
did not have any dynamic information whereas, often information exists in the rate
at which a parameters change in sequential images. Furthermore they did not in-
corporate any solar surface velocity information (dopplergram maps) which contains
important information because acoustic wave propagation and turbulent flows are
perturbed by strong near-surface magnetic field. Works using time series data have
been extremely successful in predicting solar flares [26]. In this study we intend to
progress in this field of using machine learning to improve our comprehension of
solar activities by working on these deficiencies and producing better and improved
models. While extensive work has been done in predicting the flaring potential of
active regions, no tools are available to predict the emergence of the active regions,
themselves. This study is meant to work on predicting the emergence of sunspots,
which, being precursors of solar flares, would help in trimming lead times on flare
detection and allow for better forecasts of space weather.
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Chapter 2

Data Selection and Processing

2.1 Description of Data

Our study considers data from December 2011 to November 2017. Our dataset con-
sists of 382 positive and negative regions. A positive region is one where a sunspot
emerged and a negative region is one with relatively low magnetic activity and/or no
sunspot. Out of the 382 regions, 185 were from the northern hemisphere and 197
were from the southern hemisphere. Keeping the numbers similar from both hemi-
spheres was ensured to avoid bias in the model based on the location of the region.

For this work we used Dopplergram patches of regions we were interested in.
The selection of these regions will be expanded upon in the next section. They are a
commonly used in the field of Helioseismology, a field that deals with detecting how
sound waves interact with the Sun’s interior structure, especially magnetic fields. We
chose to use these for our study because the emerging sunspot region should boost
the local speed of sound, thereby hastening the refracted return of sound waves pass-
ing through that part of the solar interior. This should lead to an identifiable signature
which our machine learning models should learn to identify and use to distinguish
dopplergrams of regions which are going to experience sunspot emergence from re-
gions which will not.

series = hmi.V_45’

duration = 76 hour

cadence = 1800 sec

columns = 512

rows = 512

scale = 0.0301

TABLE 2.1: Data Export Parameters of the Dopplergrams.

The data we are using was provided by the Helioseismic and Magnetic Imager
(HMI) aboard Nasa’s Solar Dynamics Observatory (SDO) [23]. It was obtained
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from the the Joint Science Operations Center (JSOC) maintained by Stanford at
http://jsoc.stanford.edu/. The JSOC database contains data products froma variety
of missions and instruments, including the HMI. Parameters of the data used in
this study are detailed in the table 2.1. For the purpose of our work, we used the
hmi.V_45s dataseries. This series contains Dopplergrams with a cadence of 45 sec-
onds.To create this dataseries, the Helioseismic Magnetic Imager (HMI) aboard the
Solar Dynamics Observatory takes a series of images every 45 seconds in an ex-
tremely narrow range of wavelengths in visible light of the solar photosphere.

(A) Patch

.
(B) Full Disc

FIGURE 2.1: A typical LOS Dopplergram 1

The wavelengths correspond to a region around the 6173 Angstroms spectral line
of neutral iron. From the images it captures, the instrument constructs a set of images
which extract other characteristics of the photosphere. For this Dopplergram dataset,
it calculates the velocity of gas flows on the surface of the Sun using by analysing the

1These Dopplergrams have been taken from JSOC. Image Credit: NASA/SDO/AIA/HMI/God-
dard Space Flight Center.

http://jsoc.stanford.edu/
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shifting of spectral lines. This spectral line shift is due to the Doppler effect, hence
the name Dopplergrams.

2.2 Selection criteria and Data Acquisition

For the purpose of this study the first step was to create a dataset of active and inac-
tive regions. To achieve this we used movies created via the Solar Monitor to look
at the Sun from December 2011 to November 2017. Throughout this time period we
categorised regions with high magnetic activity which experienced Sunspots in the
active region category. To create the control group category we looked at geographi-
cally same regions during a different temporal period of relative inactivity. Through
this process we created a dataset for training our models.

In the selection process, we implemented the criteria of only choosing regions
where the Sunspot emerged in the Stonyhurst Coordinate bound of longitude and
latitude ±45◦ This was done because after selection of the regions, we tracked them
for 3+1 days. The tracking started 3 days before the Time of Emergence (ToE) and
was done till 1 day after the emergence. The coordinate bound ensured that the
regions being tracked will not go out of view in the relevant time duration. Moreover
ensuring that the data is not leaning too much in the direction of the edges is better
for data integrity and minimizes limb effects.

While the dataseries has images at 45 sec intervals, for our study we used dopp-
lergrams of 30 min intervals. This was done to reduce the storage and processing
power required for the model to work. As detailed in table 2.1, for each region,
dopplergrams were acquired for a duration of 76 hours (3+1 days), with cadence of
1800 sec. These patches were of size 512 x 512. As detailed in the code in Appendix
A.1, Postel projection was also done as part of the request queries submitted to JSOC
for processing. The reason for choosing the postel projection is that it has the advan-
tages of all points on the map being proportionally accurate distances from the centre
point and all points on the map being in the correct direction.

As mentioned before, the data was acquired from JSOC. This was done us-
ing Python scripts for requesting queries and downloading them post processing by
JSOC .The script for submitting the request to JSOC has been provided in Appendix
A.1. This script can be referenced for the relevant parameters, also provided in 2.1
and the modules used (like drms). Further details regarding getting data are also
available at http://jsoc.stanford.edu/How_toget_data.html. Once the query has been
submitted and processed, we can download the data. I have also provided the script
I used for downloading the data in Appendix A.2. The data we get from the site is in
the form of Flexible Image Transport System (FITS) files. This format is regularly

http://jsoc.stanford.edu/How_toget_data.html
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used in astronomy and was developed as a standard specifically for astronomical
data. It is useful for concise storage of data and provides all the relevant metadata
about the image in the form of headers. Once the data has been downloaded, we need
to extracting the relavant matrix from this files so that they can be used for analysis
by the models. The script for achieveing this has also been provided in Appendix
A.3. This script also splits the data into a training set and a testing set where the size
of both sets can be specified by the user. Once these three scripts have been used,
your data is ready for being used in a machine learning model of your choice.

Once the data had been acquired and processed, we used machine learning mod-
els to attempt to use it for achieving our goal of predicting the emergence of sunspots.
Neural Networks were our choice of model for doing this task. Machine learning is
a desirable path for this study because of the large scope of the data. Before get-
ting into the details of how we used the data with machine learning models, lets first
discuss a little bit about the models themselves in the next section.
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Chapter 3

Machine Learning Models

3.1 Machine Learning

Machine learning (ML) is the study of computer algorithms that improve automati-
cally through experience and by the use of data[15]. The machine model uses sample
data, termed as training data to learn and improve at doing desired tasks. These tasks
might involve prediction, data generation, extrapolation among others. These algo-
rithms are used in scenarios where using conventional models is difficult. There are
three broad approaches in Machine Learning.

• Supervised learning: In this approach the model is given training data with
labels. The models learns the rule to map the data to the labels. Then it can be
tested on test data where the model is given data without labels and it has to
figure out the label using the rule it has learned [22]. Supervised learning algo-
rithms can be used in solving a variety of problems including but not limited
to active learning, classification and regression [2].

• Unsupervised learning: In this approach, the model is given training data with-
out any labels. The model attempts to identify the constitution of the data and
find structure in it. There is no feedback involved here as opposed to Super-
vised Learning. The field of density estimation in statistics, such as calculating
the probability density function, is a key application of unsupervised learning
[25].

• Reinforcement learning: In this approach, the model has to interact with a dy-
namic environment. The model is given a goal it has to achieve, some metric it
has to maximise or minimise, and it figures out by interacting with the data, the
most efficient path to achieving that goal. This approach works on a rewards
based system where the machine is given reward as feedback as it gets better
at achieving the given task [4].
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3.2 Neural Networks

FIGURE 3.1: Neural Network Schematic

A widely used example of Machine learning models are neural networks. They are
named based on the similarity of the architecture of a standard artificial neural net-
work and the biological network of neurons in a brain, as seen in the figure 3.1. Here
each circle denotes a node, which can be looked at as an individual neuron in a brain.
Despite the visual resemblance, the working of an artificial neural network has little
in common with a brain.

A neural network has three layers ,

• Input Layer: As is evident from the name, accepts input for the model.

• Hidden Layer: There can be one or more hidden layers in a neural network.
They are the site of the calculations that allow the network to learn patterns.

• Output Layer: The input having been transformed by the hidden layers, reaches
the output layer which gives out the output. This output can be of a number of
forms.

To better understand the working of a neural network we shall further look at the
building blocks of a neural network, the nodes. As mentioned above, neural networks
are made up of nodes, which receive input, use an activation function to mix it with
their internal state and an optional threshold, and then use an output function to
produce output. External data, such as photographs and papers, are the first inputs.
The final outputs, such as recognising an object in an image, complete the task.
The activation function is notable for providing a smooth transition as input values
change, i.e. a tiny change in input results in a small change in output. The network
is also made up of connections, each of which serves as an input to another neuron
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by passing the output of one neuron. Here, every individual link is assigned a certain
value called the weight which indicates its relative relevance. Multiple input and
output connections are possible for a single node. The lines connecting the circles
in figure 3.1 represent the connections. And lastly we have the propagation function,
which computes a node’s input as a weighted sum of its prior nodes’ outputs and
connections.

To accomplish its goal of learning, a neural network uses a number of parameters.

• Learning Rate: This determines how large the model’s corrective steps are in
adjusting for faults in the context of every single input. A large value of the
learning rate reduces the amount of time it takes to train the model but reduces
overall accuracy, whereas using a small value for the learning rate results in
taking longer time to train but this route allows for the possibility of a much
better accuracy as compared to a large learning rate.

• Cost Function : We strive to minimise a cost function to improve the network’s
performance at the relevant task. This is dependent on what the neural network
is intended to perform. And lastly,

• Backpropagation : Backpropagation is a technique for adjusting connection
weights to compensate for learning errors. The quantity of error is effectively
distributed throughout the connections. Backprop estimates the gradient of the
cost function associated with a particular state in relation to the weights in a
technical sense. Many approaches, such as stochastic gradient descent, can be
used to update the weights.

There are many kinds of neural networks, built and designed for being better
at specific types of tasks. For example dense neural network is one where all the
layers are fully connected. That is, ever node is connected to every other node in the
adjacent layers. Because of their relevance to our work, we are going to elaborate on
two types of neural networks in the coming sections, Convolutional neural networks
and Long Short Term Memory neural networks. The first one is designed to be better
at handling images, while the latter outperforms the competition when it comes to
data in the form of time series. Since this study primarily focuses on image based
data, lets understand Convilutional Neural Networks a little better.
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3.3 Convolutional Neural Networks

FIGURE 3.2: Convolutional Neural Network Schematic.
Credits : Tabian et al.[24]

Convolution is a method of producing a third array of numbers by multiplying two
arrays of numbers, usually of different sizes. It is the process of adding each element
of an image to its nearby neighbors, weighted by a matrix called the kernel, in the
context of image processing. This can be used for reducing the size of an image.
Traditionally, kernels have to be defined analytically to perform specific operations
on the image for size reduction. In Machine Learning, however, a kernel of the
desired size is initialized with randomized values, and through iteration, the values
are optimized for the best possible classification. We essentially extract the critical
features in the image through convolution and then feed them to the remaining layers
which are vanilla dense neural networks.

A convolutional neural network is essentially a modified dense neural network
designed for working better with images as input data. As seen in the figure 3.2,
there is a classification section which is very similar to how the standard dense neural
network works. The feature learning part is what sets CNNs apart. They have two
main layers,

• Convolution layer : This layer takes a tensor as input. This tensor has the
dimensions (number of inputs) x (input height) x (input width) x (input chan-
nels). The convolution layer implements convolution on the tensor as described
above and outputs an abstract feature map. Here, much like the dense neural
network, the nodes start with randomized weights and through the learning
process using the Backpropagation algorithm, the model figures out the opti-
mum kernel which provides the best results for the overall model. This has an
advantage over the traditional convolution process where one has to figure out
what kernel to use through previous experience with no systematic approach.
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• Pooling layer : By merging the outputs that we get from a group of neurons
from a single layer and feeding it into an individual neuron in the adjacent
layer of the model, pooling layers minimise the dimensionality of data. Small
clusters are combined via local pooling. The feature map’s neurons are all
affected by global pooling. There are two types of pooling that are commonly
used: maximum and average. The maximum value derived from each locally
present group of neurons in the feature map is used in max pooling, while the
average value is used in average pooling as seen in the figure 3.3.

FIGURE 3.3: Working of the Pooling layer in a CNN

Once the images are processed through the convolution and pooling layers, and
their features are abstracted, the result is then fed into the next part of the neural
network which is just like a normal dense neural network. Through this architecture,
CNNs boast of much better results over dense neural networks in dealing with im-
ages. They have an additional advantage of reducing the size of the images in the
feature learning process leading to lesser commputational resources required for the
model to work.
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Chapter 4

Analysis and Results

4.1 Methodology

This project was primarily aimed at using machine learning methods to conduct data
analysis of Dopplergrams to predict the emergence of Sunspots. After acquiring the
data as detailed in in Chapter 2, we used the machine learning models we described
in Chapter 3 to perform our study. The study can be divided into two approaches,

• Single Image

• Snapshot Extraction from Time Series

In the first approach, we used Dopplergrams of Time of Emergence of the Sunspot
and fed them to the model. We used the code detailed in Appendix A.3 to convert
the FITS files acquired from JSOC and fed them to a Convolutional Neural Network.
The dataset was then split into a training set and a test set in the ratio 70:30. This is
a common way of using CNNs for image classsification. The neural network creates
a feature map of the images and based on this, attempts to segregate dopplergrams
with sunspot emergence from ones with no sunspot. Similar work has been done
by Dhuri et. al [10] using Magnetograms instead of Dopplergrams with promising
results.

In the second approach, we used a time series. As detailed in section 2.2 we
tracked the active regions for 3+1 days. So we had dopplergram time series with a
cadence of 45 sec. For the purpose of this study we used a cadence of 30 minutes to
reduce computational resource requirements and attempted to extract a meaningful
snapshot from this time series to then feed to the convolutional neural network model.
Our method of extracting this snapshot was taking the variance of each pixel value
of a dopplergram across the time series as shown in the figure 4.1
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FIGURE 4.1: Representation of the snapshot exraction process

Once the extraction was done and we had a snapshot representing the time series
of all the regions in the dataset, we followed the procedure of the previous approach
and fed this snapshot to a CNN model. For help in understanding of the study, a
sample CNN model used in the study has been included in Appendix A.4

4.2 Results

The approaches undertaken in this study did not yield promising results. The method-
ology detailed in the previous section was performed 5 times to maintain statistical
integrity. The results that we got are detailed in the table 4.1. The mean accuracy
was less than ideal and the model was not performing as it should to make its usage
feasible in the real world.

Mean Accuracy Standard Deviation

Single Image 0.446 0.027

Snapshot Extraction 0.549 0.039

TABLE 4.1: Mean Accuracy of the Convolutional Neural Networks.
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Chapter 5

Conclusion

The study did not lead to desired results. Using dopplergrams alone with neural net-
works does not seem to be adequate for the model to be able to differentiate between
regions with sunspot emergence and regions without sunspot emergence. It is a diffi-
cult problem and requires more detailed investigation. One possible area that can be
explored in the future is using Long Short Term Memory (LSTM) neural networks
as they are more suitable for handling time series.

As magnetograms being used in a similar fashion with convolutional neural net-
works have given positive results [10], incorporating this data into the input for our
models might also prove useful.This would help improve the robustness of the model.
Furthermore, the results gained from including magnetic field data will hopefully al-
low us to get better insight into the solar processes that drive sunspot emergence.

For now, dopplergrams cannot give us a data driven model for accurately predict-
ing the emergence of sunspots on the surface of the sun. But it remains an interesting
problem worth exploring.
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Appendix A

Codes

A.1 Sending requests for Data

The following code was used for submitting requests for the Dopplergrams used in
the study to JSOC.

1 # -*- coding: utf-8 -*-

2

3 #importing relevant modules

4 from astropy.io import fits

5 from astropy.coordinates import SkyCoord

6 import astropy.units as u

7 from datetime import datetime as dt_obj

8 from datetime import timedelta

9 import drms

10 import json

11 import numpy as np

12 import pandas as pd

13 from pandas.plotting import register_matplotlib_converters

14 from pathlib import Path

15 import os.path

16 import os

17 from datetime import datetime

18 from scipy import stats

19 import sunpy.map

20 from sunpy.coordinates import frames

21 from sunpy.time import TimeRange, parse_time

22 from shutil import copyfile

23 import tarfile

24 import time

25 from tqdm import tqdm, trange

26 import urllib

27 import urllib.parse as parse

28

29 datadir = ’/content/drive/My Drive/cessi_ms/requests_inactive/’

30 ardatafile = ’inactive.txt’ # dataset for download
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31 col_names =[’sno’, ’harp’,’toe’,’lon’,’lat’] # columns in the

input file

32 ardata = pd.read_csv(datadir + ardatafile,sep=’\t’,header=None,

names=col_names) # read to dataframe

33 #--columns of input file---

34 noaa_list = ardata[’harp’]

35 date_list = drms.to_datetime(ardata[’toe’])

36

37

38 lon_list = ardata[’lon’]

39 lat_list = ardata[’lat’]

40 #----

41 print(date_list)

42 count = len(noaa_list) # number of entries

43 ardata # printing the dataframe

44

45 # ======== Data export parameters ========

46

47 series = ’hmi.V_45s’ # dataseries

48 ntime = 56 # we split the download duration into 56

segments

49 dur = ’76h’ # each download segment covers 3h data .

Changed this to 76h, so that in one batch we have data for

whole 76h at every 30min

50 cad = ’1800s’ # cadence for download Changed this to 30

min

51 cols = 512 # dimension

52 rows = 512

53 scale = 0.0301

54

55 op = ’exp_request’

56 #--------------------------------------------To be changed

57 email = ’astrophysics.vishal@gmail.com’ # jsoc

registered id

58 #--------------------------------------------

59 method = ’url-tar’ # url or url-tar

60 protocol = ’FITS,compress Rice’

61 ffmt = ’{seriesname}.{T_REC:A}.{segment}’

62 oformat = ’txt’

63

64 JSOC = ’http://jsoc.stanford.edu’

65 FETCH = JSOC + ’/cgi-bin/ajax/jsoc_fetch’

66 # field = ’field’

67 # azim = ’azimuth’

68 # incl = ’inclination’

69 # disamb = ’disambig’
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70

71

72 reqfile = datadir + ’inactive.txt’ #!!! this file will contain

the list of jsoc request id’s

73 errfile = datadir + ’inactive_errors.txt’ # the cases of

export errors will be saved here

74 #--------------------------------------------

75

76 Path(reqfile).touch() # create empty request and error files

77 Path(errfile).touch()

78 timestep=3;

79

80 def jsoc_request(i, noaa,datetime,lon,lat):

81 ds = ’{0}[{1}/{2}@{3}][?Quality>=0?]’.format(series,

datetime,dur,cad)

82

83 #--- update the process if required -----

84 process = ’n=0|Maproj,map=Postel,clon={0},clat={1},scale={2},

cols={3},rows={4}’ .format(lon,lat,scale,cols,rows)

85 #process=’n=0|no_op’

86 #-----------------------------------------

87

88 RESP = ’/tmp/jsoc_export.’+str(os.getpid()) + ’_’ + str(i)

89 if os.path.exists(RESP):

90 os.remove(RESP)

91

92 # url parsing all the inputs

93 ds_pq = parse.quote(ds)

94 notify_pq = parse.quote(email)

95 protocol_pq = parse.quote(protocol)

96 ffmt_pq = parse.quote(ffmt)

97

98 # setting up the wget download

99 cmd = ’op={0}&ds={1}&process={2}&method={3}&format={4}&protocol

={5}&filenamefmt={6}&notify={7}&requestor=none’ .format(op,

ds_pq,process,method,oformat,protocol_pq,ffmt_pq,notify_pq)

100 #print(cmd)

101

102 toget = ’{0} {1}?"{2}"’.format(RESP,FETCH,cmd)

103 os.system(’wget -S -nv -O {0}’.format(toget))

104

105

106 #--- reading the request response ---

107 f = open(RESP, ’r’)

108 line = f.readline()

109 while line:
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110 print(line,end=’’)

111 line = f.readline()

112 if "JSOC_" in line:

113 requestid = line.split("=")[1].strip()

114 if "size" in line:

115 size = line.split("=")[1].strip()

116 #print(’\nrequestid= ’, requestid)

117 if "wait" in line:

118 wait=line.split("=")[1].strip()

119

120 if "status" in line:

121 status=line.split("=")[1].strip()

122 f.close()

123

124

125 # if request fails or there is a queue- wait and note it in the

error file

126 try:

127 in_status = int(status)

128 except:

129 with open(errfile, ’a’) as f:

130 f.write(’{0}\t{1}\t{2}\t{3}\t{4}\n’.format(i,noaa,

datetime,lon,lat))

131 return None

132

133 #-- print the request file path

134 print(’resp= ’, RESP)

135 print("="*10)

136 #----

137 # if the run is successful note the request id’s in file

138 with open(reqfile, ’a’) as f:

139 try:

140 f.write(’{0}\t{1}\t{2}\t{3}\t{4}\t{5}\n’.format(i,noaa,

requestid, RESP,size,wait))

141 except:

142 pass

143 return None

144

145 # ====== Loop for the JSOC requests ===========

146

147 #--------------------------------------------To be changed

148 n1 = 0 # noaa start number from the list; set 0 to start

from begining

149 n2 = count # noaa end number; set as variable count for

taking all the entries

150 #--------------------------------------------
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151 m1 = 0 # start number for download segment; typically 0

152 m2 = ntime # end number for download segment; typically ntime

153

154 # the n,m values can be changed to run for specific cases when

error occurs

155

156 for i in range(n1, n2):

157

158 dtime_1 = date_list[i]

159 noaa = noaa_list[i]

160 lon = lon_list[i]

161 lat = lat_list[i]

162 dtime = dtime_1 + timedelta(hours=1*timestep)

163 for j in range(m1, m2):

164 print(’i, j = {0}, {1}’.format(i, j) )

165 dt1 = dtime - timedelta(hours=j*timestep)

166 dtf = dt1.strftime(’%Y.%m.%d_%H:%M:%S_TAI’)

167 index = str(i)+’_’ + str(j)

168 now = datetime.now()

169 print(’now = ’, now)

170 jsoc_request(index,noaa,dtf,lon,lat)

171 time.sleep(100)

A.2 Downloading the Data

Once the requests had been processed, the following code was used for downloading
the data.

1 # -*- coding: utf-8 -*-

2

3 #importing relevant modules

4

5 from datetime import timedelta

6 from datetime import datetime as dt_obj

7 import drms

8 from IPython.display import clear_output

9 import numpy as np

10 import pandas as pd

11 from pathlib import Path

12 import os.path

13 import os

14 from shutil import copyfile

15 import tarfile

16 import time

17 import urllib
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18 import urllib.parse as parse

19

20

21 p1 = 0 # start number from the request list

22 p2 = 382 # end number from the request list

23

24 email = ’astrodata.vishal@gmail.com’ # JSOC email list

25 dir = ’/home/vsingh/Documents/requests_inactive/’ # where request

and error files are saved

26 reqfile= dir+ ’north_request.txt’

27 outdir = dir+’data/inactive_north/’

28 method = ’url-tar’

29

30 if not os.path.exists(outdir):

31 os.mkdir(outdir)

32

33 req = pd.read_csv(reqfile,sep=’\t’,header=None, names=[’index’,’

date’, ’requestid’, ’resp’,’size’,’wait_time’])

34

35 req[’index’] = req[’index’].apply(str) #split the i_j index into i

and j

36 req[[’i’, ’j’]] = req[’index’].str.split(’_’,expand=True)

37 req = req.drop([’index’], axis=1)

38 cols=[’i’,’j’,’date’, ’requestid’, ’resp’,’size’,’wait_time’]

39 reqf = req.reindex(cols,axis=1)

40 reqf

41

42 reqf[reqf.duplicated(’date’,keep=False)]

43

44

45 reqf2=reqf.drop_duplicates(subset ="date", keep = ’first’).

reset_index(drop=True)

46 reqf2

47

48 ilist = reqf2[’i’]

49 jlist = reqf2[’j’]

50 requestlist = reqf2[’requestid’]

51 resplist = reqf2[’resp’]

52 datelist = reqf2[’date’]

53

54 ival = ilist.drop_duplicates().reset_index(drop=True)

55 icount = len(ival)

56

57 def index_data(inum):

58 idf = reqf[reqf[’i’] == str(inum)]

59 return idf
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60 icount

61

62 c = drms.Client(email=email, verbose=True) # setup the drms

client

63 def jsoc_download(date,request_id,outdir, num):

64 num = num

65 # create the individual folders for different index

66 out_dir = outdir + ’AR_’+ str(date)

67 if not os.path.exists(out_dir):

68 os.mkdir(out_dir)

69 # create empty files for each request id to avoid repeat

downloads

70 export_file = out_dir+’/jsoc_export_’+ request_id

71 if os.path.exists(export_file):

72 print("Download already exists! Skipping!!!")

73 time.sleep(5)

74 return None

75

76 # create the request object from id

77 r=c.export_from_id(request_id)

78

79 # check the download status

80 check = r.status

81 if check > 0:

82 print(’Status = ’, check)

83 print(’\nDownload not ready. Try again later’)

84 return None

85

86 # create a file containing details of all the downloaded files

87 Path(out_dir+’files.txt’).touch()

88 r.data.to_csv(out_dir+’files.txt’,header=True, index=False, sep

=’\t’, mode=’a’)

89

90 # download the files

91 r.download(out_dir)

92

93 # untar them if needed then delete the tar file

94 if method == ’url-tar’:

95 tarf = out_dir+’/’+request_id+’.tar’

96 outdir_tar = out_dir+’/’+request_id

97 if not os.path.exists(outdir_tar):

98 os.mkdir(outdir_tar)

99 tf = tarfile.open(tarf)

100 tf.extractall(outdir_tar)

101 tf.close()

102 Path(export_file).touch()
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103 return None

104

105 print(’i\tj\tdate\t’)

106 for i in range(icount):

107 inum = ival[i]

108 idf = index_data(inum)

109 idate = idf.date.values[0]

110 # itime = idf.time.values[0]

111 fcount = len(idf)

112 print(’{0}\t{1}\t{2}’.format(inum,fcount,idate))

113

114 n1 = 0 # start number for index; = 0 if starting from

begining

115 n2 = icount # end number; = icount if doing all

116

117 # for loop for the download

118 for i in range(n1, n2):

119 inum = ival[i]

120 idf = index_data(inum)

121 idate = idf.date.values[0]

122 ireq = idf.requestid.values

123 fcount = len(idf)

124

125 m1 = 0 # start number for the segment; typically 0

126 m2 = fcount # end number; typically filecount, fcount

127

128

129 for j in range(m1, m2):

130 print(’{0}\t{1}\t{2}/{3}’.format(i,idate, j+1, m2))

131 num = str(j)

132 request_id = ireq[j]

133 now = dt_obj.now()

134 print(’now = ’, now)

135 jsoc_download(idate,request_id,outdir, num)

136 #clear_output()

A.3 Data Processing

The data we got from JSOC was in the Flexible Image Transport System (FITS) file
format. To use it for analysis we had to extract the image matrices and for efficient
usage of the data by the machine learning models, were converted to datacubes.

1 #data_prep

2

3 from astropy.io import fits
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4 from random import randrange

5 import glob

6 import numpy as np

7 import pandas as pd

8 import scipy.io as sio

9

10 def Remove(duplicate):

11 final_list = []

12 for num in duplicate:

13 if num not in final_list:

14 final_list.append(num)

15 return final_list

16

17 #active

18 datadir = ’/home/ML/Output_files/harp_active/AR_’

19 ardatafile = ’/MS/vs16ms007/CESSI/ML/active_harp_list.txt’

20 col_names =[’1’,’harp’,’3’,’4’, ’5’, ’6’] # columns in the input

file

21 ardata = pd.read_csv(ardatafile,sep=’\t’,header=None,names=

col_names)

22 harp_list = ardata[’harp’]

23 harp_list=Remove(harp_list)

24 fname_active=[]

25 for ar in harp_list:

26 fn=glob.glob(datadir+str(ar)+’/*.fits’)

27 if len(fn)<3:

28 continue

29 fn=fn[1]

30 fname_active.append(fn)

31

32 #inactive_north

33 datadir = ’/home/ML/Output_files/harp_inactive/north/AR_’

34 ardatafile = ’/MS/vs16ms007/CESSI/ML/north_2.csv’

35 col_names =[’harp’,’2’,’3’,’4’, ’5’] # columns in the input file

36 ardata = pd.read_csv(ardatafile,sep=’\t’,header=None,names=

col_names)

37 harp_list = ardata[’harp’]

38 fname_inactive_north=[]

39 for ar in harp_list:

40 fn=glob.glob(datadir+str(ar)+’/*.fits’)

41 if len(fn)<3:

42 continue

43 fn=fn[1]

44 fname_inactive_north.append(fn)

45

46 #inactive_south



30 Appendix A. Codes

47 datadir = ’/home/ML/Output_files/harp_inactive/south/AR_’

48 ardatafile = ’/MS/vs16ms007/CESSI/ML/south_2.csv’

49 col_names =[’harp’,’2’,’3’,’4’, ’5’] # columns in the input file

50 ardata = pd.read_csv(ardatafile,sep=’\t’,header=None,names=

col_names)

51 harp_list = ardata[’harp’]

52 fname_inactive_south=[]

53 for ar in harp_list:

54 fn=glob.glob(datadir+str(ar)+’/*.fits’)

55 if len(fn)<3:

56 continue

57 fn=fn[1]

58 fname_inactive_south.append(fn)

59

60 #creating target array

61 target_active_unit=[1,0]

62 target_inactive_unit=[0,1]

63 fname_inactive=np.concatenate((fname_inactive_north,

fname_inactive_south))

64 target_inactive=np.tile(target_inactive_unit,(len(fname_inactive)

,1))

65 target_active=np.tile(target_active_unit,(len(fname_active),1))

66

67

68

69 #creating data cube

70 data_cube=[]

71

72 c=0;

73 for fname in fname_active:

74 hdul = fits.open(fname)

75 hdul.verify("silentfix+warn")

76 dat=hdul[1].data

77 if c==0:

78 data_cube=dat;

79 c=1

80 elif c==1:

81 data_cube=np.dstack((data_cube,dat))

82 for fname in fname_inactive:

83 hdul = fits.open(fname)

84 hdul.verify("silentfix+warn")

85 dat=hdul[1].data

86 data_cube=np.dstack((data_cube,dat))

87

88

89 target=np.concatenate((target_active,target_inactive))
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90 data_cube=data_cube.T

91

92 #Splitting data_cube into test and train

93 percent=0.70 #percentage of data used for training

94 train_len=int(percent*len(target))

95 x_test=[]

96 x_train=[]

97 y_test=[]

98 y_train=[]

99 randind=[]

100 init_len=0;

101 while(len(randind)<train_len):

102 for i in range(init_len,train_len):

103 randind.append(randrange(len(target)))

104 randind=Remove(randind)

105 init_len=len(randind)

106

107

108 #putting values into train

109 for i in range(0,len(target)):

110 if i in randind:

111 x_train.append(data_cube[i])

112 y_train.append(target[i])

113 else:

114 x_test.append(data_cube[i])

115 y_test.append(target[i])

116 x_test=np.asarray(x_test)

117 x_train=np.asarray(x_train)

118 y_test=np.asarray(y_test)

119 y_train=np.asarray(y_train)

120

121 sio.savemat(’/home/ML/Output_files/active_region.mat’, {’x_train’:

x_train,’x_test’:x_test,’y_train’:y_train,’y_test’:y_test })

A.4 CNN

Here is a sample CNN code used by us in the study.

1 import keras

2 from keras.models import Sequential

3 from keras.layers import Dense

4 from keras.utils import to_categorical

5 from keras.layers.convolutional import Conv2D # to add

convolutional layers
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6 from keras.layers.convolutional import MaxPooling2D # to add

pooling layers

7 from keras.layers import Flatten ,Dropout# to flatten data for

fully connected layers

8 from scipy.io import loadmat

9 import numpy as np

10

11 ar_set = loadmat("/home/ML/Output_files/active_region.mat")

12 x_train = ar_set["x_train"].astype(np.float32)

13 x_test = ar_set["x_test"].astype(np.float32)

14 y_train = ar_set["y_train"].astype(np.float32)

15 y_test= ar_set["y_test"].astype(np.float32)

16

17 # reshape to be [samples][pixels][width][height]

18 x_train = x_train.reshape(x_train.shape[0], 512, 512, 1).astype(’

float32’)

19 x_test = x_test.reshape(x_test.shape[0], 512, 512, 1).astype(’

float32’)

20

21 #normalize the data

22 scal=np.max((np.max(x_train),np.max(x_test)))

23 x_train = x_train / scal

24 x_test = x_test / scal

25

26 #y_train = to_categorical(y_train)

27 #y_test = to_categorical(y_test)

28 num_classes = y_test.shape[1] # number of categories

29

30 #works

31 def convolutional_model():

32

33 # create model

34 model = Sequential()

35 model.add(Conv2D(16, (5, 5), activation=’relu’, input_shape

=(512, 512, 1)))

36 model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

37 model.add(Dropout(0.25))

38 model.add(Conv2D(8, (2, 2), activation=’relu’))

39 model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

40

41 model.add(Flatten())

42 model.add(Dense(600, activation=’relu’))

43 # model.add(Dropout(0.5))

44 # model.add(Dense(300, activation=’relu’))

45 # model.add(Dense(600, activation=’relu’))

46 model.add(Dense(num_classes, activation=’softmax’))
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47

48 # Compile model

49 model.compile(optimizer=’adam’, loss=’categorical_crossentropy’

, metrics=[’accuracy’])

50 return model

51

52 # build the model

53 model = convolutional_model()

54

55 # fit the model

56 model.fit(x_train, y_train, validation_data=(x_test, y_test),

epochs=1, batch_size=40, verbose=2)

57

58 # evaluate the model

59 scores = model.evaluate(x_test, y_test, verbose=0)

60 print("Accuracy: {} \n Error: {}".format(scores[1], 100-scores

[1]*100))
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