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1 Experiment 1- Experimental verification of

the Kramers–Kronig relations

1.1 Lock-In Amplifier

1.1.1 Theory

The phase sensitive or ”lock-in” amplifier is a common instrument used in
solving signal-to-noise problems in research laboratories. It is a very powerful
instrument where signals of interest can be detected even if they are smaller
than the noise signals they accompany. Lock-in amplifiers are also used to
detect and measure very small AC signals—down to nanovolts or smaller
where noise is always a concern. Lock-in amplifiers use a technique known
as phase sensitive detection to single out the component of the signal at
a specific frequency and phase. Once it does this, noise signals at other
frequencies or random phases are rejected through electronic (analog lockin)
or software (DSP lock-in) filtering.

1.1.2 Working

The lock-in amplifier is used to detect a modulated signal (i.e., a signal that
oscillates at a well defined frequency and phase) that is typically buried in a
large noise background. To do so, a reference signal (i.e. a clean sinusoidal
voltage whose frequency is the same as the one that you wish to detect) is
supplied into the ”lock-in.” This reference provides both the frequency and
phase of the expected signal. To narrow its output to a small bandwidth
around the expected frequency at the specified phase, the signals are mul-
tiplied together (a.k.a. mixed or demodulated). If the signal and reference
are correlated their multiplication will be positive on average since a positive
number times a positive number and a negative number times a negative
number are both result in positive answers. Random noise and the reference
are uncorrelated and their multiplied value will fluctuate in time and average
to zero. A low pass filter picks out the part of the signal that is correlated
with the reference essentially by averaging the output of the mixer, This is
the lock-in output. A setting on the low pass filter (the time constant) sets
how long this averaging is done (and the inverse of the time constant is the
bandwidth of the measurement).
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Figure 1: Block Diagram of a Lock-in Amplifier.

1.1.3 Mathematics

Lock-in measurements require the input signal to oscillate at the reference
frequency. Thus, typically an experiment is excited (or modulated) at a fixed
frequency (from an oscillator or function generator) and the lock-in amplifier
detects the response from the experiment. Suppose the reference signal is a
square wave at frequency ωR. This might be the sync output from a function
generator. If the sine output from the function generator is used to excite
the experiment, the response might be VIsin(ωRt+ θI) where VI is the signal
amplitude.

Using the square wave, the lock-in then creates an internal reference
VRsin(ωRt + θR) and multiplies the signal by the reference using a mixer.
The mixer generates the product of its two inputs as its output VMI .

VMI = VIVRsin(ωRt+ θI)sin(ωRt+ θR) (1)

or

VMI =
1

2
VIVRcos(θR − θI) +

1

2
VIVRsin(2ωRt+ θR + θI) (2)

Since the two inputs to the mixer are at exactly the same frequency, the first
term in the mixer output is at DC (time independent) or cos(θR − θI). The
second term is at frequency 2ωR which is a high frequency and can be readily
removed using a low pass filter. After filtering,

VMI+FILT =
1

2
VIVRcos(θR − θI) (3)

which is proportional to the cosine of the phase difference between the input
and the reference. Hence the term phase-sensitive detection.
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In order to measure VI using equation (3), the phase difference between
the signal and reference, θR − θI , must be stable and known. The lock-in
amplifier solves this problem by using two mixers, with the reference inputs
900 out of phase. The reference input to the second mixer is VRsin(ωRt +
θR − π/2) and the output of the second mixer is:

VM2 =
1

2
VIVRcos(θR − θI − π/2) +

1

2
VIVRsin(2ωRt+ θR + θI − π/2) (4)

After filtering,

VM2+FILT =
1

2
VIVRcos(θR − θI − π/2) =

1

2
VIVRsin(θR − θI) (5)

The amplitude and phase (compared to the reference) of the input signal can
be determined from the two mixer outputs, equations (3) and (5). The result
is:

Amplitude : R = (2/VR)
√
V 2
MI+FLT + V 2

M2+FLT (6)

Phase : θR − θI = tan−1
(
VM2+FLT

VMI+FLT

)
(7)

1.2 The Kramers-Kronig Relations

The Kramers-Kronig Relations gives us the relation between the real and the
imaginary parts of dielectric functions, relations that are actually indepen-
dent of the assumption of thermal equilibrium, unlike fluctuation-dissipation
theorem. The theorem considers the much weaker assumption of causality
(A causal function is one whereby the response to an excitation depends only
on the past, not on the future.)

Dispersion relations are relations between physical quantities which hold,
in general, for every linear, time-independent, causal physical system. There-
fore, we shall formulate them in a somewhat more abstract manner for a cause
U(t) and an effect E(t), and later on, explain them for some examples of in-
terest to us. The quantities U(t) and E(t) are assumed to be real physical
quantities which are connected by some physical process, not necessarily an
electromagnetic one. But this process of connection has to he linear, time-
independent, and causal. Examples for such U(t) and E(t) are the electric
field E(t) or the polarization P(t), respectively, at a certain point in a piece
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of matter. Another example is the current I in a circuit caused by a generator
of voltage V, which is the case that we have considered in our calculation.

For an LCR circuit in series, we have:

Figure 2: Schematic of circuit used for experiment.

L
dI

dt
+
Q

C
+RI = V

L
d2Q

dt2
+
Q

C
+R

dQ

dt
= 0

Here, I = dQ/dt. This is analogous relation to a damped oscillator. The
solution: Q(t) = Q(ω)e−iwt

Since I = dQ/dt, I(ω) = −iωQ(ω)

g(ω) =
I(ω)

V (ω)
=

1

Z
(8)

where Z = −iωL + R + i
ωC

. In this case the transfer function g(ω) is
Y (ω) = 1/Z. It is also called the admittance of the circuit.

Now, we take the general consideration of U(t) and E(t) in Fourier form:

U(t) =
1√
2π

∫ ∞
−∞

dωe−iωtu(ω) (9)

E(t) =
1√
2π

∫ ∞
−∞

dωe−iωte(ω) (10)
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Next, we use the assumption that the relation between the cause U(t)
and the effect E(t) is linear. This implies the following: If the cause U1 gives
rise to the effect E1, and U2 gives rise to the effect E2 then αU1 +βU2 causes
the effect αE1 + βE2. This property of linearity may be summarized in the
following form:

E(t) =

∫ ∞
−∞

dt′G(t, t′)U(t′) (11)

where G(t, t′) is a weight function that weights the distinct causes at time
t′ contributing to the effect at time t. Hence, studying the physical system
with respect to cause and effect is equivalent to the investigation of the Green
function G(t, t′).

The next property of the physical process to be taken into account is that
this physical process, connecting cause and effect, should itself be indepen-
dent of the time at which it proceeds. This implies that G(t, t′) can be a
function of the time-difference t− t′ only; then,

E(t) =

∫ ∞
−∞

dt′G(t− t′)U(t′) (12)

From Fourier Transform,

G(t) =
1

2π

∫ ∞
−∞

dωe−iωtg(ω) (13)

Using this result in our case,

g(ω) =

∫ ∞
−∞

dteiωtG(t) =

∫ ∞
0

dteiωtG(t) (14)

The same equation may be used to extend the definition of g(ω) to com-
plex frequencies ω = ω1 + iω2 Then one can also expect that g(ω) possesses
no singularities in the upper complex ω-half-plane if g(ω) behaves reasonably
along the real ω-axis. To better understand the sense of the extension of the
definition of g(ω) to complex ω-values in the upper half-plane we compare:

g(ω1) =

∫ ∞
0

dteiω1tG(t) (15)

g(ω1 + iω2) =

∫ ∞
0

dteiω1tG(t)e−iω2t (16)
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For complex ω the integrand is smaller bt the factor e−ω2t. if ω lies in the
upper half-plane, then ω2 > 0 and therefore always 0 ≤ e−ω2t ≤ 1. For the
derivation, we get:(

dg

dω

)
ω=ω1+ω2

=

∫ ∞
0

dteiω1tG(t)ite−ω2t (17)

In general, this derivative exists in the upper half-plane, supposing g(ω) is
finite on the real axis: although the integrand, compared to (15), is multiplied
by it the factor e−ω2t will suppress any power of t for long times. Now, if
the derivative of a complex function exists in the neighborhood of a point in
the complex plane, then the function is analytic at this point. Due to these
considerations we may conclude that the derivative of g(ω) exists everywhere
in the upper half-plane, and therefore, the function g(ω) is analytic in the
entire upper half-plane. This implies that for a linear, time-independent,
and causal system the Fourier transform of the Green function G(t) (transfer
function) g(ω) originally defined for real ω equals the limiting value of a
function g of complex argument ω which is analytic in the entire upper half-
plane.

The dispersion relations are derived from the line integral:∫
dω′

g(ω′)

ω′ − ω
(18)

taken along the real axis (possibly shifted into the upper half-plane) and
a semicircle of radius R lying in the upper half-plane.

g(ω) has no singularities in the interior and on the boundary of this closed
curve. Therefore, with ω on the real axis, g(ω′)/(ω′ − ω) is also analytic in
the domain mentioned; hence, the integral (18) vanishes. Now, it is further
assumed that g(ω) behaves such (that is, that the physical system considered
behaves in such a manner) that the part of the integral (18) along the upper
semicircle vanishes as R −→∞, but this is not always the case.

This quantity has a pole on the real line ω = ω′ (along with other poles
in the lower half-plane). Now, as R → ∞, the semicircle C of the order
2πR
R3 → 0, or

0 =

∫
C

dω′
g(ω′)

ω′ − ω
=

∫ ∞
−∞

dω′
g(ω′)

ω′ − ω
+

∫
arc

dω′
g(ω′)

ω′ − ω
(19)

=

∫ ∞
−∞

dω′
g(ω′)

ω′ − ω
= P

∫ ∞
−∞

dω′
g(ω′)

ω′ − ω
− iπg(ω) (20)
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Figure 3: Illustration of the integration path used in eq (17)

From this, we get:

g(ω) =
1

iπ
P

∫ ∞
−∞

dω′
g(ω′)

ω′ − ω
(21)

If we look at the expression, we see that, both the LHS and inside the
integration, we get the g(ω) term. But the integration term is preceded by
an i, which is the root of the relation between the real and imaginary part of
g(ω).

We get,

Re[g(ω)] =
1

π
P

∫ ∞
−∞

dω′
Im[g(ω′)]

ω′ − ω
(22)

Im[g(ω)] = − 1

π
P

∫ ∞
−∞

dω′
Re[g(ω′)]

ω′ − ω
(23)

These equations are called the Dispersion Relations. The characteris-
tic of this equation is to connect the real and imaginary part of g(ω).

Now, we induce the condition of symmetry, i.e. g(ω) = g∗(−ω).
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Re[g(ω)] =
1

π
P

∫ ∞
−∞

dω′
Im[g(ω′)]

ω′ − ω
= Re[g(−ω)]

=
1

π
P

∫ ∞
−∞

dω′
Im[g(ω′)]

ω′ + ω

Im[g(ω)] = − 1

π
P

∫ ∞
−∞

dω′
Re[g(ω′)]

ω′ − ω
= −Im[g(−ω)]

= − 1

π
P

∫ ∞
−∞

dω′
Re[g(ω′)]

ω′ + ω

Therefore,

Im[g(ω)] = −2ω

π
P

∫ ∞
0

dω′
Re[g(ω′)]

ω′2 − ω2
(24)

Re[g(ω)] =
2

π
P

∫ ∞
0

dω′
ω′Im[g(ω′)]

ω′2 − ω2
(25)

These two equations are called the Kramers-Kronig dispersion relations.

1.3 Results

The aim of our experiment was to experimentally verify to Kramers Kronig
relations. To achieve this, we chose to work in the environment of an LCR
circuit (fig 2). The quantity used for this verification of the relations was the
Admittance of the circuit. It has both real and imaginary components. So we
experimentally tabulated both the real and imaginary values of admittance
of the circuit using a Lock-In Amplifier. Then, we used the amplitude of real
component of the admittance along with the Kramers Kronig relations to
”calculate” the amplitude of the imaginary component of the admimttance.
We then proceeded to plot both the experimentally calculated amplitude
and the amplitude calculated through the Kramers Kronig relations. Simi-
lar treatment was also done to the experimentally gotten amplitude of the
imaginary component of admittance to calculate the amplitude of the real
component of admittance.

We observed a very good agreement of experimentally obtained data and
data calculated using Kramers Kronig relation for amplitudes of both real
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and imaginary components of admittance of the circuit. Even on the log-log
scale, it is difficult to differentiate the calculated and observed amplitudes.
The plots are shown below.

Figure 4: Comparison of Amplitude of real component of admittance (exper-
imental results and data calculated using Kramers Kronig Relations).
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Figure 5: Comparison of Amplitude of imaginary component of admittance
(experimental results and data calculated using Kramers Kronig Relations).

1.4 Discusssion

The LCR circuit we have used in our experiment is analogous to many optical
materials, when it comes to systems with balanced loss and gain regions. The
concept of these systems stems from the idea of the extension of quantum
mechanics to non-Hermitian Hamiltonians possessing PT-symmetry. PT-
symmetrical systems are invariant with respect to the simultaneous spatial
inversion and time inversion. The former performed by the linear operator
P̂ which transforms coordinates and momenta as r −→ −r and p −→ −p,
while the time inversion is performed by the antilinear operator T̂ , which
transforms p −→ −p and i −→ −i; the simultaneous application of these
operators, P̂ T̂ antilinear, it transforms r −→ −r, p −→ −p and i −→ −i.

In optics, PT-symmetry is usually studied in the frequency domain by

10



considering solutions of the scalar Helmholtz equation for the z-component
of the electric field E:(

∂2

∂x2
+

∂2

∂y2
+
ω2

c2
ε(ω, x, y)

)
E(ω, x, y) = 0 (26)

A system is PT-symmetrical if and only if (26) is invariant with respect
to the P̂ T̂ - transformation. This happens if ε(ω, x) satisfies (26).

Re(ε(ω, x)) = Re(ε(ω,−x)) (27)

Im(ε(ω, x)) = −Im(ε(ω,−x)) (28)

In any optical system with either loss or gain, frequency dispersion of the
permittivity is crucial. Due to causality, a dielectric function ε(ω, x) must
be analytic in the upper half of the complex frequency plane so that all its
singularities are situated in the lower half of the complex plane, just as the
calculations we did in the Kramers-Kronig relation derivation. Causality
must hold for both dissipative and active systems. Due to this causality
principle, ε(ω, x) must satisfy the Kramers-Kronig relations.

As an example, let us consider a medium described by dielectric permit-
tivity as given below:

ε(ω) = εm −
α

ω2 − ω2
0 + 2iγω

(29)

Here, εmis a dielectric permittivity of the matrix in which amplifying (ab-
sorbing) media are placed, α and γ are the strength and the linewidth of am-
plification (absorption), respectively. For an absorbing medium Im(ε) > 0,
thus α and γ must be positive. For an amplifying medium, Im(ε) < 0, so
that one of the parameters α or γ must be negative. For real frequencies, neg-
ative γ is equivalent to the complex conjugation of ε(ω). This corresponds
to moving the pole of ε(ω) from the lower to the upper half of the com-
plex frequency plane. The latter violates causality for the response function.
Therefore, the only choice for parameters α and γ is α < 0 and γ > 0, which
corresponds to the “antiresonance” of the real part of the dielectric function
[20]. The choice α < 0 and γ > 0 ensures causality but is incompatible with
PT-symmetry. Indeed, as shown in Fig. 6, when condition (26) is satisfied,
due to resonant behavior of the absorbing medium and antiresonant behavior
of the amplifying medium, condition (27) can hold at one point, ω = ω′, only.
This illustrates the general rule following from the Kramers-Kronig relations.
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Figure 6: Real (thick lines) and imaginary (thin lines) parts of dielectric
permittivity of absorbing (solid lines) and amplifying (dashed lines) media
dielectric permittivities are given by Eq. (29) with opposite signs of the
imaginary parts.

We can witness a similar trend in our case of admittance. The graph:

Figure 7: The graphs of real and imaginary parts of admittance that we got
from experiment

The graph that we got, is for the case when the LCR is functioning as a
loss medium. The graphs invert, just as in Fig. (6), when we solve the LCR
for a medium with gain. Thus, LCR is analogous to the optical medium,
as the trend of loss and gain in LCR is reflected in the absorbance and
amplification of the optical medium. In fact, if we see the derivation of the
Kramers-Kronig relation, we see that this is the case for any medium where
we see an equation resembling the damped harmonic oscillator. And this
trend can be shown using PT-symmetry. This is a very powerful result.
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Code for interfacing with the Lock-in amplifier and tak-
ing data (here, we have typed the code for 900Hz to
5KHz range. In fact, this is a general code that can be
edited to function in any range, given the sensitivity):

1 c l c ; c l e a r ;
2

3 L=gpib ( ’ k e i t h l e y ’ , 0 , 12 ) ; %Lock−in address=12
4 fopen (L) ;
5

6 f a=ze ro s (4100 ,1) ;
7 theta=ze ro s (4100 ,1) ;
8 f p r i n t f (L , ’SENS 17 ’ ) ;
9 pause (2 ) ; %After changing s e n s i t i v i t y , i t i s b e t t e r

to wait f o r 2 sec ,
10 %to avoid i n c o r r e c t read ing
11 q=1;
12 f o r i = 901:5000
13 f p r i n t f (L , ’FREQ %d ’ , i ) ;
14 theta ( q )=i ;
15 i f i== 1787
16 f p r i n t f (L , ’SENS 18 ’ ) ;
17 pause (2 ) ;
18 end
19 i f i ==1885
20 f p r i n t f (L , ’SENS 17 ’ ) ;
21 pause (2 ) ;
22 end
23 f a ( q )=( s t r2doub l e ( query (L , ’OUTP?3 ’ ) ) ) ;
24 q=q+1;
25 end
26

27

28 f c l o s e (L) ;
29 d e l e t e (L) ;
30 p lo t ( theta , f a ) ;
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2 Experiment 2- Linking Thermodynamics

and Information by the experimental veri-

fication of Landauer’s Principle

2.1 Introduction

In 1961, Rolf Landauer argued that erasure of information is a dissipative
process. It says ”Any logically irreversible manipulation of information, such
as the erasure of a bit or the merging of two computation paths, must be ac-
companied by a corresponding entropy increase in non-information-bearing
degrees of freedom of the information-processing apparatus or its environ-
ment.” In this experiment, we aim to experimentally realize the existence of
Landauer’s bound in the generic model of a one-bit memory. The way to
go about this is to trap a single colloidal particle in a double-well potential,
which is similar to the original work of Landauer.

2.2 Maxwell’s Demon

Maxwell’s demon is a thought experiment that illustrates the probabilistic
nature of the second law of thermodynamics. James Clerk Maxwell intro-
duced it to the public in 1871 in his book Theory of Heat. The demon is
an intelligent agent or creature capable of measuring the speed of individual
molecules in a gas. The gas is split into two vessels connected by a door,
where both vessels are at the same pressure and temperature, and the entire
system is in equilibrium. The demon can also open and close the door and
allow fast molecules to pass to the right chamber and slow molecules to the
left. It keeps repeating this process until the majority of the slow molecules
are on the left and fast ones are on the right. This creates a temperature
gradient, and one could potentially use that gradient for extracting work.
Essentially, the demon took the isolated system out of thermal equilibrium,
without doing work, which contradicts the second law of thermodynamics.
Maxwell’s demon is the first discussion of the role that feedback plays in ther-
modynamics, showing how the demon’s measurement based on the acquired
information can alter the thermodynamics of a system.
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Figure 8: Schematic figure of Maxwell’s demon thought experiment.

In fig 8 (a), the system is initially in thermal equilibrium. The demon
can measure the speed of individual molecules and sort the fast and slow by
opening the door between two vessels.In fig 8(b), sorting molecules creates a
temperature difference in the system. The demon is therefore able to decrease
the entropy of the system without performing any work himself, in apparent
violation of the second law of thermodynamics.

The paradox of the apparent violation of the second law can be resolved by
noting that during a full thermodynamic cycle, the memory of the demon,
which is used to record the coordinates of each molecule, has to be reset
to its initial state. Indeed, according to Landauer’s principle, any logically
irreversible transformation of classical information is necessarily accompanied
by the dissipation of at least kβT ln(2) of heat per lost bit where k is the
Boltzmann constant and T is the temperature.

2.3 The Idea

A device is said to be logically irreversible if its input cannot be uniquely
determined from its output. Any Boolean function that maps several input
states onto the same output state, such as AND, NAND, OR and XOR, is
therefore logically irreversible. In particular, the erasure of information, the
RESET TO ONE/NULL operation, is logically irreversible and leads to an
entropy increase of kβln2 per erased bit. This entropy cost required to reset
the demon’s memory to a blank state is always larger than the initial entropy
reduction, thus safeguarding the second law.
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For the experimental verification, we plan to take the over-damped col-
loidal particle in a double-well potential. Our plan so far to go about this is
to take charged beads and isolate a bead and trap it in a double-well potential
by applying an electric field. Another way to go is to take silicon beads, and
trap it using vertical optical tweezers. In both of these methods, we need
to suspend the beads in a liquid medium, and take data of the Brownian
motion observed.

Since presently we did not have beads to observe the Brownian motion
and take readings, we resolved to the crude method to realize it, and used
talcum particles instead, although the particles are much bigger in diameter
(about 30µm) than the beads we intended to use (about 2µm). This shall
atleast tell us about the accuracy of the calculation done for the estimation
of the amplitude of the Brownian motion, and also the nature of the liquid
suitable to execute the experiment.

2.4 Brownian Motion

Brownian motion or pedesis, is the random motion of particles suspended in
a fluid resulting from their collision with the fast-moving molecules in the
fluid.

This pattern of motion typically alternates random fluctuations in a par-
ticle’s position inside a fluid sub-domain with a relocation to another sub-
domain. Each relocation is followed by more fluctuations within the new
closed volume. This pattern describes a fluid at thermal equilibrium, defined
by a given temperature. Within such a fluid, there exists no preferential
direction of flow as in transport phenomena. More specifically, the fluid’s
overall linear and angular momenta remain null over time. The kinetic en-
ergies of the molecular Brownian motions, together with those of molecular
rotations and vibrations, sum up to the caloric component of a fluid’s internal
energy.

The many-body interactions that yield the Brownian pattern cannot be
solved by a model accounting for every involved molecule. In consequence,
only probabilistic models applied to molecular populations can be employed
to describe it.
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2.4.1 Brownian motion in macroscopic particles:

The more direct effects due to Brownian motion, such as thermal motion
of free electron in the circuit cannot actually be observed experimentally; it
is not possible to follow the motion of one individual electron or ion. But,
light particles such as pollen grains, dust, or in our case beads and talcum
will, however, exhibit a somewhat similar motion which can be visualised.
As a matter of fact, this motion was first observed on a macroscopic level
(powdered charcoal on alcohol) by a Dutch physician Jan Ingenhausz in 1785,
but this phenomenon was named after a biologist, Robert Brown who, in
1827, gave an extensive report of his detailed investigations of the motion of
pollen grains in water. Later, it was found out that it was due to the collisions
with molecules of the surrounding fluid that were in thermal motion. Our
current understanding tells us, that diffusion in thermal equilibrium is a
random motion, mediated through collisions, i.e. it is a microscopic process.
Mobility is a macroscopic quantity, but the origin of it has the same link:
collisional interactions. In fact, these microscopic fluctuating motion is
not caused by thermal motion; it is thermal motion

2.4.2 Calculation and estimation of the RMS of the amplitude of
motion of the talcum particles

Langevin, soon after Einstein’s work, presented in 1908 a different approach
towards solving this problem, which was simpler. We shall proceed with his
analysis.

Average diameter of a talcum particle, a = 50µm
Viscosity of water, η = 8.9× 10−4Pa

There is a limitation to this analysis though; it only works for particles
heavier than the liquid. We checked, and found out that the density of
talcum is about 2.7 times the density of water, so we can use this analysis
for calculation.

Assumption: the force on a particle is assumed to be composed of an
average and fluctuating part F (t), with 〈F (t)〉 = 0. This gives:

M
d2x

dt2
= −6πηa

dx

dt
+ F (t) (30)

18



Here Langevin assumed that the coefficient to the average value −d〈x〉
t

could be identified with the viscous drag given by the same formula as that
in hydrodynamics, i.e. −6πηaν where η is the dynamic viscosity of the
liquid surrounding the particle, and a is the diameter of the particle, which
is assumed to be spherical.

Multiplying by x on both sides, we get:

1

2
M
d2(x2)

dt2
−M(

dx

dt
)2 = −3πηa

d(x2)

dt
+ xF (t) (31)

Since M is high (compared to the light particles such as the particles of
the liquid medium), the particle does change its velocity, but very little after
each collision. For the time interval of relevance (> 10−8), we can assume
that F (t) is independent of x, i.e. 〈xF (t)〉 ' 0.

Another assumption that we take here, is that, if x is known at time
t = 0, then we can take 〈x〉 = 0 and 〈x2〉 = 0. But, at t = 0, we do not have
any information about dx/dt.

Since the particle is in thermal equilibrium with the surrounding medium,
we have:

〈(dx
dt

)2〉 = 〈u2x〉 =
kβT

M
(32)

Here, we have considered for 2-dimensional case (since the colloidal par-
ticle is confined between a slide and a cover slip, the dimension along the
z-direction is much higher than the x,y-direction, so it can be considered as
a 2-dimensional case). We’ll get the same expression for 〈u2y〉, assuming the
medium is isotropic. Writing 〈r2〉 = 〈u2x〉+ 〈u2y〉 we get:

1

2
M
d2(〈r2〉)
dt2

+ 3πηa
d(〈r2〉)
dt

= 2kβT (33)

⇒ d(〈r2〉)
dt

=
2kβT

3πηa
+ Ce−6πηat/M (34)

Here, C is a constant determined by the initial conditions. For large
times (t >> M/6πηa), we can ignore the exponential term, since it’ll be
really small.

We get,
〈r2〉 = 2Dt (35)

where,

D =
kβT

3πηa
(36)
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From (31), we get: √
〈r2〉 = rRMS =

√
2Dt (37)

This equation gives us the RMS of the amplitude of the brownian motion.
After putting the values of D (calculated using the value of a and η given

above) and t ' 10sec in room temperature, we get,

rRMS = 0.44× 10−6m = 0.44µm (38)

One thing we should keep in mind that the particle that we used for this
observation is too large. Ideally, it should have been 1/10th the size of the
particle we used, for us to track and quantify the data, with our calculated
results. But this gives us an idea that the vRMS shall exist in the µm to mm
range, depending on the value of t.

2.5 Experimental Details

We tried to observe Brownian motion in talcum powder particles. We had
access to a microscope with 100x magnification and 6x eyepiece lens, giving
us a combined magnification of 600x. A visual study of the talcum powder
particles kept on a layer of water (mixed with detergent to reduce surface
tension, thereby reducing clumping) on a cover slip, showed us that the order
of magnitude of the motion of particles was of the order of magnitude of the
size of the particles(µm) which is in agreement of our calculation. We’d
like to emphasize on the fact that this observation is done solely to verify
the motion of the particles, and to establish a ground for the observation of
brownian motion with charged beads.

2.6 What’s Next?

As mentioned in the idea, we now aim to do this experiment with charged
beads, isolate individual beads (by tracking their movement in the medium,
which shall also tell us whether water is a good medium for the experiment
or not) and trap them in a double-well potential applying an electric field.
This way we will control the motion of the beads in z-direction and be able
to better quantify their motion in the x-y plane. We’ll have to consider the
Brownian motion in the z-direction in our calculation too. Also, here we have
used water as a medium.
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